Surface modification of H-ferrierite by reaction with triethoxysilane.

نویسندگان

  • Tania Montanari
  • María Concepción Herrera Delgado
  • Maria Bevilacqua
  • Guido Busca
  • María Angeles Larrubia Vargas
  • Luís J Alemany
چکیده

The interaction of triethoxysilane (TES) with H-ferrierite (H-FER) and its effects on acidity have been investigated by infrared spectroscopy. TES adsorbs only on the external surface of H-FER and allows the almost complete disappearance of the external silanol groups. New SiH groups are formed which appear to be inactive in acid-base interactions. The adsorption of propionitrile, which diffuses into the zeolitic channels, provides evidence for the lack of substantial perturbation of the strongly acidic internal bridging OH groups. On the contrary, the adsorption of the hindered basic probe molecule o-toluonitrile, which cannot penetrate the FER channels, shows that not only terminal silanols but also Al3+ Lewis acid sites present on the external surface of H-FER almost totally disappear after TES treatment. Treatment with TES seems to allow virtually the total deactivation of the H-FER external surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Surface Modification of Mesoporous Nanosilica with [3-(2-Aminoethylamino) propyl] Trimethoxysilane and Its Application in Drug Delivery

Mesoporous silica nanoparticles with unique structure (SBA-15) were synthesized and modified by [3-(2-Aminoethylamino) propyl] trimethoxysilane (AEAPTMS). The synthesized nanoparticles were characterized by TGA, N‌2‌ adsorption, SEM, FTIR, CHN elemental analysis. The total weight loss for the modified SBA-15 is 15.2% and thermal analysis reveal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 2  شماره 

صفحات  -

تاریخ انتشار 2005